COMPARATIVE STUDY OF VESTA AND CERES INTERIORS BASED ON THE DAWN MISSION GRAVITY AND TOPOGRAPHY MEASUREMENTS

Asteroids, Comets, Meteorites 2017 Montevideo, Uruguay April 10-14, 2017

A. I. Ermakov¹ (eai@caltech.edu), R. S. Park¹, R. R. Fu², M. T. Zuber³, C. A. Raymond¹, C. T. Russell⁴

¹Jet Propulsion Laboratory, California Institute of Technology

²Massachusetts Institute of Technology

³Lamont-Doherty Earth Observatory, Earth Institute, Columbia University

⁴University of California Los Angeles

Outline

- Why Vesta?
- What we learned about Vesta's interior from gravity and topography
- Why Ceres?
- What we learned about Ceres' interior from gravity and topography
- Compare evolutions of Vesta and Ceres
- Summary of findings

Unique basaltic spectrum

- Unique basaltic spectrum
- A group of asteroids in the dynamical vicinity of Vesta with similar spectra

- Unique basaltic spectrum
- A group of asteroids in the dynamical vicinity of Vesta with similar spectra
- Large depression in the southern hemisphere of Vesta

Image credit: NASA/HST

Thomas et al., 1997

- Unique basaltic spectrum
- A group of asteroids in the dynamical vicinity of Vesta with similar spectra
- Large depression in the southern hemisphere of Vesta
- A group of Howardite-Eucrite-Diogenite (HED) meteorites, with similar reflectance spectra

- ↑ Reflectance spectra of eucrite Millbillillie from Wasson et al. (1998)
- **V**-type asteroids spectra from Hardensen et al., (2014)

- Unique basaltic spectrum
- A group of asteroids in the dynamical vicinity of Vesta with similar spectra
- Large depression in the southern hemisphere of Vesta
- A group of Howardite-Eucrite-Diogenite (HED) meteorites, with similar reflectance spectra
- Strongest connection between a class of meteorites and an asteroidal family

- ↑ Reflectance spectra of eucrite Millbillillie from Wasson et al. (1998)
- **V**-type asteroids spectra from Hardensen et al., (2014)

Interior structure modeling

- Vesta is not presently in hydrostatic equilibrium
- No unique solution only from gravity/topography, need an extra constraint
- Geochemically motivated 3layer interior structure (Ruzicka et al., 1997)
- Densities constrained by the Howardite-Eucrite-Diogenite (HED) meteorites

Bouguer Anomaly

Key results from thermal and impact modeling

- Vesta was likely close to hydrostatic equilibrium in its early history
- Major impact occurred when Vesta was effectively nonrelaxing
- The areas >50° away from major impacts were not significantly deformed
- Crater counting reveals that the northern Vesta terrains are old (>3Gy)

 Northern terrains likely represent the preimpact shape of Vesta.

Ermakov et al., 2014

Interior structure modeling

- Vesta is not presently in hydrostatic equilibrium
- No unique solution only from gravity/topography, need an extra constraint
- Geochemically motivated 3layer interior structure (Ruzicka et al., 1997)
- Densities constrained by the Howardite-Eucrite-Diogenite (HED) meteorites

Contours are mantle density [kg/m³]

Core radius of 110 to 155 km

Ceres

Why Ceres?

- Largest body in the asteroid belt
- Low density implies high volatile content
- Conditions for subsurface ocean
- Much easier to reach than other ocean worlds

What did we know before Dawn

Castillo-Rogez and McCord 2010

Ceres accreted as a mixture of ice and rock just a few My after the condensation of Calcium Aluminum-rich Inclusions (CAIs), and later differentiated into a water mantle and a mostly anhydrous silicate core.

Zolotov 2009

Ceres formed relatively late from planetesimals consisting of hydrated silicates.

Bland 2013

If Ceres *does* contain a water ice layer, its warm diurnallyaveraged surface temperature ensures extensive viscous relaxation of even small impact craters especially near equator

Evidence for viscous relaxation

- More general approach: study topography power spectrum
- Power spectra for Vesta closely fits with the power law to the lowest degrees (λ < 750 km)
- Ceres power spectrum deviates from the power law at λ > 270 km

Ermakov et al,. in prep

Latitude dependence of relaxation

Ermakov et al., in prep

Finite element model

Fu et al., 2014; Fu et al, submitted to EPSL

- Assume a density and rheology structure
- Solve Stokes equation for an incompressible flow using deal.ii library

$$\partial_i (2\eta \dot{\varepsilon}_{ij}) - \partial_i p = -g_i \rho$$

$$\P_i u_i = 0$$

 Compute the evolution of the outer surface power spectrum

Example of a FE modeling run

Finite element modeling results

Two-layer model

- Simplest model to interpret the gravitytopography data
- Only 5 parameters: two densities, two radii and rotation rate
- Yields $C/Ma^2 = 0.373$ $C/M(R_{vol})^2 = 0.392$

Using Tricarico 2014 for computing hydrostatic equilibrium

Bouguer anomaly

Ermakov et al., submitted to JGR

Bouguer anomaly

Ermakov et al., submitted to JGR

Isostatic anomaly

Vesta Early accretion Presumably chondritic Ceres chondritic + volatiles Late accretion Time

Time

Summary

- Formed early (< 5 My after CAI)
- Once hot and hydrostatic, Vesta is no longer either
- Differentiated interior
- Most of topography acquired when Vesta was already cool
 => uncompensated topography
- Despun by two giant collisions
- Combination of gravity/topography data with meteoritic geochemistry data provides constraints on the internal structure
- Formed late (> 5 My after CAI)
- Partially differentiated interior
- Developed a subsurface ocean in the past
- Experienced limited viscous relaxation
- Much lower surface viscosities (compared to Vesta) allowed compensated topography
- Ceres' crust is light (based on admittance analysis) and strong (based on FE relaxation modeling)
- Not much water ice in Ceres crust (<30 vol%) now

